3.644 \(\int \frac {(a+b \sec (c+d x))^{5/2}}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=239 \[ \frac {16 b \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{15 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (9 a^2+23 b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{15 d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 a^2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {22 a b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{15 d \sqrt {\sec (c+d x)}} \]

[Out]

16/15*b*(a^2-b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b
))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/d/(a+b*sec(d*x+c))^(1/2)+2/5*a^2*sin(d*x+c)*(a+b*sec
(d*x+c))^(1/2)/d/sec(d*x+c)^(3/2)+22/15*a*b*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/d/sec(d*x+c)^(1/2)+2/15*(9*a^2+2
3*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*(
a+b*sec(d*x+c))^(1/2)/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.69, antiderivative size = 239, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3841, 4104, 4035, 3856, 2655, 2653, 3858, 2663, 2661} \[ \frac {16 b \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{15 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (9 a^2+23 b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{15 d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 a^2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {22 a b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{15 d \sqrt {\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])^(5/2)/Sec[c + d*x]^(5/2),x]

[Out]

(16*b*(a^2 - b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])
/(15*d*Sqrt[a + b*Sec[c + d*x]]) + (2*(9*a^2 + 23*b^2)*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c
+ d*x]])/(15*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) + (2*a^2*Sqrt[a + b*Sec[c + d*x]]*Sin[c
+ d*x])/(5*d*Sec[c + d*x]^(3/2)) + (22*a*b*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(15*d*Sqrt[Sec[c + d*x]])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3841

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(a^2*C
ot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[1/(d*n), Int[(a + b*Csc[e + f*x]
)^(m - 3)*(d*Csc[e + f*x])^(n + 1)*Simp[a^2*b*(m - 2*n - 2) - a*(3*b^2*n + a^2*(n + 1))*Csc[e + f*x] - b*(b^2*
n + a^2*(m + n - 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2]
 && ((IntegerQ[m] && LtQ[n, -1]) || (IntegersQ[m + 1/2, 2*n] && LeQ[n, -1]))

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4035

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4104

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m +
1)*(d*Csc[e + f*x])^n)/(a*f*n), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rubi steps

\begin {align*} \int \frac {(a+b \sec (c+d x))^{5/2}}{\sec ^{\frac {5}{2}}(c+d x)} \, dx &=\frac {2 a^2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2}{5} \int \frac {\frac {11 a^2 b}{2}+\frac {3}{2} a \left (a^2+5 b^2\right ) \sec (c+d x)+\frac {1}{2} b \left (2 a^2+5 b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {2 a^2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {22 a b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}-\frac {4 \int \frac {-\frac {1}{4} a^2 \left (9 a^2+23 b^2\right )-\frac {1}{4} a b \left (17 a^2+15 b^2\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{15 a}\\ &=\frac {2 a^2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {22 a b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}-\frac {1}{15} \left (-9 a^2-23 b^2\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{15} \left (8 b \left (a^2-b^2\right )\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {2 a^2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {22 a b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {\left (8 b \left (a^2-b^2\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{15 \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (-9 a^2-23 b^2\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{15 \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}}\\ &=\frac {2 a^2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {22 a b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {\left (8 b \left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{15 \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (-9 a^2-23 b^2\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{15 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}\\ &=\frac {16 b \left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{15 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (9 a^2+23 b^2\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{15 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 a^2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {22 a b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.80, size = 200, normalized size = 0.84 \[ \frac {(a+b \sec (c+d x))^{5/2} \left (2 a \sin (c+d x) \left (3 a^2 \cos (2 (c+d x))+3 a^2+28 a b \cos (c+d x)+22 b^2\right )+32 b \left (a^2-b^2\right ) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )+4 \left (9 a^3+9 a^2 b+23 a b^2+23 b^3\right ) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )\right )}{30 d \sec ^{\frac {5}{2}}(c+d x) (a \cos (c+d x)+b)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[c + d*x])^(5/2)/Sec[c + d*x]^(5/2),x]

[Out]

((a + b*Sec[c + d*x])^(5/2)*(4*(9*a^3 + 9*a^2*b + 23*a*b^2 + 23*b^3)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Ellipt
icE[(c + d*x)/2, (2*a)/(a + b)] + 32*b*(a^2 - b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (
2*a)/(a + b)] + 2*a*(3*a^2 + 22*b^2 + 28*a*b*Cos[c + d*x] + 3*a^2*Cos[2*(c + d*x)])*Sin[c + d*x]))/(30*d*(b +
a*Cos[c + d*x])^3*Sec[c + d*x]^(5/2))

________________________________________________________________________________________

fricas [F]  time = 0.72, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (b^{2} \sec \left (d x + c\right )^{2} + 2 \, a b \sec \left (d x + c\right ) + a^{2}\right )} \sqrt {b \sec \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac {5}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(5/2)/sec(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

integral((b^2*sec(d*x + c)^2 + 2*a*b*sec(d*x + c) + a^2)*sqrt(b*sec(d*x + c) + a)/sec(d*x + c)^(5/2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{\sec \left (d x + c\right )^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(5/2)/sec(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^(5/2)/sec(d*x + c)^(5/2), x)

________________________________________________________________________________________

maple [B]  time = 1.92, size = 1931, normalized size = 8.08 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^(5/2)/sec(d*x+c)^(5/2),x)

[Out]

-2/15/d*(-9*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b*((b+a*cos(d*x
+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+23*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b)
)^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^2*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c))
)^(1/2)*sin(d*x+c)+17*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b*((b
+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-23*EllipticF((-1+cos(d*x+c))*((
a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^2*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+c
os(d*x+c)))^(1/2)*sin(d*x+c)+9*cos(d*x+c)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),
(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a^3-23*cos(d*x+c)
*sin(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(
1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*b^3-9*a^2*b*((a-b)/(a+b))^(1/2)-11*a*b^2*((a-b)/(a+b))^(1/
2)-9*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-
1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3+6*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^3-
9*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^3+23*cos(d*x+c)*((a-b)/(a+b))^(1/2)*b^3+3*cos(d*x+c)^4*((a-b)/(a+b))^(1/2)*
a^3+14*cos(d*x+c)^3*((a-b)/(a+b))^(1/2)*a^2*b+34*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a*b^2-5*cos(d*x+c)*((a-b)/(a
+b))^(1/2)*a^2*b-23*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a*b^2+15*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(
d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)
*sin(d*x+c)*b^3-9*cos(d*x+c)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b)
)^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a^2*b+23*cos(d*x+c)*sin(d*x+c)
*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*((b+a*cos(d*x+c))/(1+cos(d*x+c
))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a*b^2+17*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b)
)^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2)
)*a^2*b-23*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*Ellipt
icF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^2-23*b^3*((a-b)/(a+b))^(1/2)+9*El
lipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*((b+a*cos(d*x+c))/(1+cos(d*x+
c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-23*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+
c),(-(a+b)/(a-b))^(1/2))*b^3*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)
-9*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*((b+a*cos(d*x+c))/(1+cos
(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+15*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/
(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b^3*sin(d
*x+c))*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*cos(d*x+c)^3*(1/cos(d*x+c))^(5/2)/sin(d*x+c)/(b+a*cos(d*x+c))/((a-b
)/(a+b))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{\sec \left (d x + c\right )^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^(5/2)/sec(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^(5/2)/sec(d*x + c)^(5/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/cos(c + d*x))^(5/2)/(1/cos(c + d*x))^(5/2),x)

[Out]

int((a + b/cos(c + d*x))^(5/2)/(1/cos(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**(5/2)/sec(d*x+c)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________